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Introduction: the Navier-Stokes equations
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The Navier-Stokes equations in vorticity form

Let D ⊆ R2.
NAVIER-STOKES EQUATIONS:

describe the motion of the fluid.

v = (v1, v2, 0) vector field

Take the curl
y

VORTICITY EQUATION:

describes the local rotation of
the fluid.

ξ =
(

0, 0, ∂v2
∂x1
− ∂v1

∂x2

)
scalar

field.


∂v
∂t + (v · ∇)v = ν∆v −∇p + f ,

∇ · v = 0,

v|t=0 = v0.

boundary conditions

ξ = curl(v) = ∇⊥ · v


∂ξ
∂t + v · ∇ξ = ν∆ξ + curl(f ),

∇ · v = 0,

ξ = ∇⊥ · v .
boundary conditions

TWO DIMENSIONAL PHYSICAL EXAMPLES: atmosphere, ocean.
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The Navier-Stokes equations in vorticity form

In the equation for the vorticity appears the velocity v but...

v can be recovered from ξ by the Biot-Savart law

v(t, x) = (k ∗ ξ(t, ·))(x)

k is the Biot-Savart kernel and it has a singularity in zero (in R2 and
T2):

|k | ≤ C (|x |−1 + 1).

Thus...

Equivalence of formulations for the velocity and vorticity, for enough
regular solutions,

Equation for the vorticity: closed equation for ξ.
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SPDEs: martingale measure and functional
approaches
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Solving a SPDEs: two different approaches

How do we solve a SPDEs?

What notion of solution do we consider?

These questions are strictly related to the notion of stochastic integral we
consider...

Stochastic integration theory in Hilbert spaces w.r.t. a cylindrical
Wiener process (Da Prato-Zabczyk).

Stochastic integration theory w.r.t. a martingale measure (Walsh).

In some cases the two notions of solution are equivalent.
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The martingale measure approach

SPDEs with values in R;

Random field notion of solution: the solution process is evaluated at
time t and space x and takes values in R;

Walsh notion of stochastic integral: is the integral of a real-valued
process w.r.t. a martingale measure.

Example: one dimensional stochastic heat equation

∂X (t, x)

∂t
=
∂2X (t, x)

∂x2
+ σ(X (t, x))Ẇ (t, x)

Useful if one is interested in the regularity properties of the solution
process at fixed points in time and space, e.g. existence of a density
for the image law of the solution.

Literature: heat, wave, Burgers equations.

Never used for the Navier-Stokes equations.
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The functional approach

stochastic evolution equations with values in a Hilbert (or Banach)
space H;

the solution process is evaluated in time t and takes values in H;

Da Prato-Zabczyk notion of stochastic integral: is the integral w.r.t.
a cylindrical Wiener process.

Example: one dimensional stochastic heat equation

dX (t) = AX (t)dt + G (X (t))dW (t)

Is the approach generally used for the study of the Navier-Stokes
equations.
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Analysis on the flat torus T2
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Existing literature and new results

There exists a fairly well-developed literature for what concerns the
stochastic Navier-Stokes equations on the flat torus.

The existence and uniqueness of the solution process is a well
understood problem. The results available in literature are based on
the functional (Da Prato-Zabczyk) approach.

What did we prove?

Existence, uniqueness and space-time continuity of the solution
process in the martingale measure approach.

Why did we use this approach?

We are interested in the regularity of the solution process, evaluated
at fixed points in time and space, in the Malliavin sense.
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Regularity in Malliavin sense: General Ideas

AIM: prove the existence of a density for the image law of the solution
process ξ(t, x) at fixed (t, x) ∈ [0,T ]× D.

ξ(t, x) :(Ω,F ,P)→ (R,B(R), µ)

µ(A) = P(ξ(t, x) ∈ A), A ∈ B(R)

We ask whether µ is absolutely continuous w.r.t. the Lebesgue measure on
R, i.e. there exists a density ρ s.t. µ(A) =

∫
A ρ(x) dx .

TOOLS: Malliavin calculus.

EXISTING LITERATURE (fluid dynamics): one dimensional stochastic
Burgers equation.
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Vorticity equation on T2

For (t, x) ∈ [0,T ]× D, (with D = [0, 2π]2)

∂ξ

∂t
(t, x)−∆ξ(t, x) + v(t, x) · ∇ξ(t, x) = σ(ξ(t, x))w(dx ,dt)

∇ · v(t, x) = 0

ξ(t, x) = ∇⊥ · v(t, x)

ξ(0, x) = ξ0(x)

periodic boundary conditions

(1)

w(dx , dt) is the formal notion for a Gaussian noise white in time coloured
in space.

(H1): σ satisfies a linear growth condition and it is globally Lipschitz

(H2): σ is bounded.
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Walsh notion of solution

Let g(t, x , y) be the fundamental solution to the heat equation on the flat
torus. A random field (r.f.) ξ = {ξ(t, x), t ∈ [0,T ]× D} is a solution to
equation (1) if it satisfies the evolution equation

ξ(t, x) =

∫
D
g(t, x , y)ξ0(y) dy+

∫ t

0

∫
D
∇yg(t−s, x , y)·v(s, y)ξ(s, y) dy ds

+

∫ t

0

∫
D
g(t − s, x , y)σ(ξ(s, y))w(dy ,ds) (2)

with v = k ∗ ξ.

Stochastic integral understood in the Walsh sense w.r.t. a worthy
martingale measure.

”Simple case” example: Itô integral, stochastic integral w.r.t. a
space-time white noise.
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Constructing a worthy martingale measure

Intuitively: the heat kernel becomes less smooth as the dimension
increases: for the well posedness of the stochastic integral a weight in
space is needed.
Formally: introduce the worthy martingale measure starting from an
isonormal Gaussian process W = {W (h), h ∈ HT}.

Let
Q = (−∆)−b, for some b > 0. (3)

Let HT = L2(0,T ; L2
Q(D)). endowed with the scalar product

〈f , g〉HT
=

∫ T

0
〈f (s), g(s)〉L2

Q(D) ds =

∫ T

0
〈Qf (s), g(s)〉L2(D) ds.

The covariance operator Q provides the regularization in space.

From W we construct the worthy martingale measure w .

Characterization of the class of predictable processes.
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Existence and uniqueness of a r.f. solution

Theorem

Let b > 0 in (3) and p > 2. Let us assume that Hypothesis (H1)-(H2)
hold. If ξ0 ∈ Lp(D), then there exists a unique solution to equation (2)
which is continuous with values in Lp(D).

KEY POINTS OF THE PROOF

The non linear term is non Lipschitz: we introduce a truncation factor
ΘN(‖ξ‖Lp(D)), p > 2, where ΘN : [0,+∞)→ [0, 1] a C 1 function s.t.

|Θ′N(s)| ≤ 2 for any s ≥ 0 and ΘN(s) =

{
1 if 0 ≤ s < N

0 if s ≥ N + 1.

Exploiting the Biot-Savart law we have a control also on v .

ΘN(|ξ(t, x)|) not suitable.

We use a stopping time argument: we prove the existence of local
solution and then we pass to the limit.
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Existence of a space-time continuous
modification

Theorem

Let b > 0 in (3) and p > 2. Let us assume that Hypothesis (H1)-(H2)
hold. If ξ0 ∈ C (D) the solution admits a modification which is a
space-time continuous process.

KEY POINTS OF THE PROOF AND A CONSIDERATION

The regularizing effect of the heat kernel and its gradient.

With the martingale measure approach we require the minimal
hypothesis on the covariance Q.
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Existence of a density

We require more regularity on the covariance function σ.

(H3): σ is of class C 1 on R and has first derivative bounded;

(H4): there exists σ0 > 0 such that |σ(x)| ≥ σ0 for all x ∈ R.

Theorem

Let b > 1 in (3) and assume that hypothesis (H1)-(H4) hold. If
ξ0 ∈ C (D), then for every t ∈ [0,T ] and x ∈ D the image law of the
random variable ξ(t, x) is absolutely continuous w.r.t. to the Lebesgue
measure on R.

The proof is based on a Malliavin analysis of the solution process at fixed
points in time and space.
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Analysis on the whole plane R2
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Main differences from the T2 case

AIM: Investigate the existence and
uniqueness of the solution.

MAIN SOURCE OF DIFFICULTY:
the domain is not compact.

The technique used for T2 can not be readapted in the case of the
whole space.

The singularity of the Biot-Savart kernel prevents us to obtain the
needed estimates that allows us to the treat the vorticity equation as
a closed equation for ξ.

On a non compact domain this closed form is difficult to handle;
indeed, k /∈ Lp(R2) for any 1 ≤ p ≤ ∞.
−→ we take into account the equations for the velocity.

When v exists and has a suitable regularity, we can handle the
equations for the vorticity.
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The equations in R2

In this case we work in the functional approach.

We consider both the equations for the velocity and the vorticity.

Navier-Stokes equations
∂tv + [−∆v + (v · ∇)v +∇p] dt = G (v) ∂tW

∇ · v = 0,

v(0, x) = v0(x).

Vorticity equations
∂tξ + [−∆ξ + v · ∇ξ] dt = curl(G (v) ∂tW )

∇ · v = 0

ξ = ∇⊥ · v ,
ξ(0, x) = ξ0(x).
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Hypothesis on the noise
We consider q > 2 and assume that there exists g ∈ (0, 1) such that
(IG1): The mapping G : L2 → LHS(H;H1−g ,2) is well defined and

sup
v∈L2

‖G (v)‖LHS(H;H1−g,2) =: Cg ,2 <∞,

(IG2):The mapping G : L2 → R(H;H1−g ,q) is well defined and

sup
v∈L2

‖G (v)‖R(H;H1−g,q) =: Cg ,q <∞.

(IG3): If assumption (IG1) holds, then for any ϕ ∈ H1−g ,2 and any
v ∈ L2 the mapping v → G (v)∗ϕ ∈ H is continuous when in L2 we
consider the Fréchet topology inherited from the space L2

loc or the weak
topology of L2.
(IG4): If assumption (IG1) holds, then G ia s Lipschitz continuous
function when we consider a weak norm, i.e.

∃ Lg > 0 : ‖G (v1)− G (v2)‖LHS (H;L2) ≤ Lg‖v1 − v2‖L2 , ∀v1, v2 ∈ L2
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The equations for the velocity

Existence and uniqueness of L2-solutions of the stochastic
Navier-Stokes equations in unbounded domains is not trivial: the
direct application of the compactness method, which is central in the
proof, fails.

Main source of difficulty: the embedding H1,2 ⊂ L2, unlike in the
bounded space, is not compact.

We prove the required regularity on v starting from the work

Z. Brzeźniak and E. Motyl, Existence of a martingale solution of the
stochastic Navier-Stokes equations in unbounded 2D and 3D domains, J.
Differential Equations, 254 (2013), pp. 1627–1685.
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The noise driving the vorticity equation

The noise driving the equation for the velocity is rather good!

The noise driving the equation for the vorticity is not: taking the curl
we loose one order of differentiability in space.

The noise is not regular enough to allow to use Itô formula in the
space of finite energy velocity vectors, which is the basic space in
which one looks for existence of solutions.

We introduce an approximation system by regularizing the covariance
of the noise. We follow the ideas of the work

Z. Brzeźniak and B. Ferrario, A note on stochastic Navier-Stokes
equations with not regular multiplicative noise, Stoch. Partial Differ. Equ.
Anal. Comput., 5 (2017), pp. 53–80.
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Martingale solution

A martingale solution to the vorticity equation is a triple consisting of a
filtered probability space (Ω,F , {Ft}t∈[0,T ],P), an {Ft}-adapted
cylindrical Wiener process W on H and an {Ft}-adapted measurable
process ξ such that ξ : [0,T ]× Ω→ L2 with P-a.a. paths

ξ(·, ω) ∈ C ([0,T ] ; L2),

and such that for all z ∈ C∞sol and t ∈ [0,T ]

〈ξ(t), z〉 = 〈ξ0, z〉+

∫ t

0
〈ξ(s),∆z〉ds +

∫ t

0
〈v(s)ξ(s),∇z〉ds

+ 〈
∫ t

0
G̃ (v(s))dW (s), z〉

P-a.s., where v is the solution to the equation for the velocity.

Stochastic integral understood in the Da Prato-Zabczyk sense.
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Main result

Theorem

1 Let q = 4 and assume conditions (IG1), (IG2), (IG3). Let ξ0 ∈ L2

and v0 ∈ L2. Then there exists a martingale solution ((Ω̃, F̃ , P̃), W̃ , ξ̃)
to the vorticity equation. In addition ξ̃ ∈ L4(0,T ; L4) P-a.s..

2 If, in addition, we assume that condition (IG2) holds also for a q > 2,
and ξ0 ∈ L2 ∩ Lq, v0 ∈ L2 ∩ Lq, then also ξ̃ ∈ L∞(0,T ; Lq) P-a.s..

3 Under the same assumptions of Point (1) and (IG5), there exists a
unique strong solution to the vorticity equation.

April 17, 2018 26 / 28



Key points of the proof

Step 1: APPROXIMATION. We introduce an approximation system
by regularizing the covariance of the noise (Hille-Yosida
approximations).
We construct a sequence of approximating processes {ξn}n.

Step 2: UNIFORM ESTIMATES IN n. We work pathwise with two
auxiliary processes βn and ζn with ξn = βn + ζn.

Step 3: TIGHTNESS OF THE LAW OF THE APPROXIMATIONS
{ξn}n.

Step 4: PASSAGE TO THE LIMIT.

Step 5: PATHWISE UNIQUENESS. Proved for v by a classical
argument.

SOME REMARKS.

The compactness method is based on a modification of the classical
Dubinsky compactness theorem that allows to work in unbounded
domains.

We work locally and with weak topologies.

April 17, 2018 27 / 28



Thank you for your attention!
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