ARCHIMEDES, A DINNER AND A THEOREM

A divertissement on the monotonicity of perimeter

GIORGIO STEFANI

ABSTRACT. If $A, B \subset \mathbb{R}^n$ are two convex bodies and $A \subset B$, then the perimeter of A does not exceed the perimeter of B. This monotonicity property of the perimeter dates back to the ancient Greek and Archimedes himself took it as a postulate in his celebrated work on the sphere and the cylinder. A few years ago, a couple of papers by M. Carozza, F. Giannetti, F. Leonetti, and A. Passarelli di Napoli established lower bounds on the difference of the perimeters of A and B in terms of their Hausdorff distance when n=2 and n=3. In this talk, after a brief introduction on the problem and the known results, I will generalise these lower bounds to any dimension $n \geq 4$. Time permitting, I will show how this approach can be extended to the case of anisotropic Wulff perimeters.

1. Archimedes and the Monotonicity of Perimeter

The ambient space is \mathbb{R}^n with $n \geq 2$. For all $s \geq 0$ we let \mathcal{H}^s be the s-dimensional Hausdorff measure (in particular, \mathcal{H}^0 is the counting measure).

Definition 1.1. A convex body $E \subset \mathbb{R}^n$ is a compact convex set with non-empty interior.

If $E \subset \mathbb{R}^n$ is a k-dimensional convex body, with $1 \le k \le n$, we let ∂E be its boundary, which is a set of Hausdorff dimension (k-1).

Definition 1.2. If $E \subset \mathbb{R}^n$ is a convex body, then $P(E) = \mathcal{H}^{n-1}(\partial E)$ denotes the perimeter of E.

Proposition 1.3 (Monotonicity). If $A \subset B \subset \mathbb{R}^n$ are convex bodies, then

$$(1.1) P(A) \le P(B).$$

Inequality (1.1) is weel-known and dates back to the ancient Greek. Archimedes (287 b.C. – 212 b.C.) took it as a postulate in his work on the sphere and the cylinder, [1, p. 36]. Various proofs of (1.1) are possible: via the Cauchy formula for the area surface of convex bodies or by the monotonicity property of mixed volumes, [2, §7], by the Lipschitz property of the projection on a convex closed set, [3, Lemma 2.4], or by the fact that the perimeter is decreased under intersection with half-spaces, [7, Excercise 15.13].

Sketch of the proof of Proposition 1.3. Assume A has polyhedral boundary, so that $A = \bigcap_{i=1}^m H_m$, where $H_i = \{x \in \mathbb{R}^n : \langle x - p_i, \nu_i \rangle \ge 0\}$ is a closed half-space, with $p_i, \nu_i \in \mathbb{R}^n$, $|\nu_i| = 1$. Then it is enough to prove $P(B \cap H) \le P(B)$ for any $H \subset \mathbb{R}^n$ closed half-space,

Date: April 24, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 52A20; Secondary 52A40.

Key words and phrases. Convex body, monotonicity of perimeter, Hausdorff distance.

2 G. STEFANI

since this easily implies

$$P(A) = P(B \cap A) = P\left(B \cap \bigcap_{i=1}^{m} H_m\right) \le P(B).$$

So let $H = \{x \in \mathbb{R}^n : \langle x - p, \nu \rangle \ge 0\}$ for some $p, \nu \in \mathbb{R}^n$, with $|\nu| = 1$. Define the constant vector field $X = -\nu$ on \mathbb{R}^n . Then, by the divergence theorem, we have

$$0 = \int_{B \cap H^c} \operatorname{div} X \, dx = \int_{\partial (B \cap H^c)} \left\langle X, \nu_{B \cap H^c}^{\text{est}} \right\rangle \, dx$$
$$= \int_{(\partial H) \cap B)} \left\langle X, \nu \right\rangle \, d\mathcal{H}^{n-1} + \int_{(\partial B) \cap H^c} \left\langle X, \nu_B^{\text{est}} \right\rangle \, d\mathcal{H}^{n-1}.$$

Thus $\mathcal{H}^{n-1}(\partial H \cap B) \leq \mathcal{H}^{n-1}(\partial B \cap H^c)$ and so

$$P(B \cap H) \le \mathcal{H}^{n-1}(\partial B \cap H) + \mathcal{H}^{n-1}(\partial H \cap B)$$

$$\le \mathcal{H}^{n-1}(\partial B \cap H) + \mathcal{H}^{n-1}(\partial B \cap H^c) = P(B).$$

If A is a convex body, then (by linear interpolation) we can find a sequence $(A_k)_{k\in\mathbb{N}}$ of convex body with polyhedral boundary such that $A_k \subset A$ and $P(A) = \lim_{k\to +\infty} P(A_k)$. Then $P(A_k) \leq P(B)$ for all $k \in \mathbb{N}$ and the conclusion follows.

Problem 1.4 (Converse). Under which assumptions on $E \subset \mathbb{R}^n$ the following implication

$$P(E) \leq P(C) \ \forall C \subset \mathbb{R}^n \ convex \ body, \ E \subset C \implies E \ convex \ body$$

is true?

2. Lower Bounds and Leonetti's Dinner Problem

Since A and B are compact sets and $A \subset B$, the Hausdorff distance of A and B is

(2.1)
$$h(A,B) = \max_{y \in B} \min_{x \in A} |x - y|.$$

Let $a \in A$ and $b \in B$ be such that h(A, B) = |a - b|. It turns out that $b \in B \setminus A$ and a is the orthogonal projection of b onto the closed convex set A.

Lower bounds for the deficit $\delta(B, A) = P(B) - P(A)$ with respect to h(A, B) of A and B have been recently established for n = 2, 3 in [4–6].

The case n=2 was treated for the first time in [6], and was subsequently improved in [4] to the following inequality

(2.2)
$$P(A) + \frac{2h(A,B)^2}{\sqrt{\left(\frac{\mathcal{H}^1(B\cap L)}{2}\right)^2 + h(A,B)^2 + \frac{\mathcal{H}^1(B\cap L)}{2}}} \le P(B),$$

where $L = \{x \in \mathbb{R}^2 : \langle b - a, x - a \rangle = 0\}$, see Figure 1.

The case n=3 was studied in [5], where the authors proved the following inequality

(2.3)
$$P(A) + \frac{\pi dh(A, B)^2}{\sqrt{d^2 + h(A, B)^2 + d}} \le P(B),$$

where $d = \operatorname{dist}(a, \partial B \cap \partial H)$ and $H = \{x \in \mathbb{R}^3 : \langle b - a, x - a \rangle \leq 0\}$, see Figure 2.

Inequalities (2.2) and (2.3) are sharp, in the sense that they are equalities at least in one case, see [4,5]. Inequality (2.3), however, does not seem to be the correct generalization of

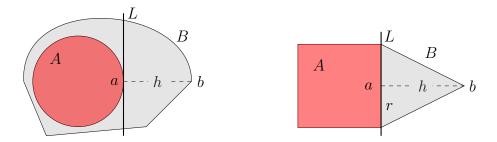


FIGURE 1. Inequality (2.2): setting (left) and optimal configuration (right).

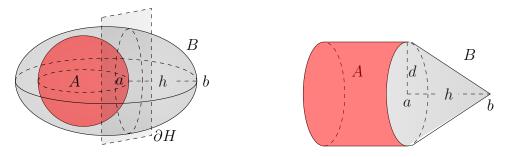


FIGURE 2. Inequality (2.3): setting (left) and optimal configuration (right).

inequality (2.2) to the case n=3, because of the distance $d=\operatorname{dist}(a,\partial B\cap\partial H)$ replacing the bigger radius $r = \sqrt{\mathcal{H}^2(B \cap \partial H)/\pi}$.

Problem 2.1 (F. Leonetti's dinner problem, Levico Terme, January 2016). Is it possible to prove similar inequalities for $n \geq 4$?

Theorem 2.2 ([9, Corollary 1.3]). Let $n \geq 2$. If $A \subset B$ are two convex bodies in \mathbb{R}^n , then

(2.4)
$$P(A) + \frac{\omega_{n-1}r^{n-2}h^2}{\sqrt{h^2 + r^2} + r} \le P(B),$$

where h = h(A, B) is the Hausdorff distance of A and B and

(2.5)
$$r = \sqrt[n-1]{\frac{\mathcal{H}^{n-1}(B \cap \partial H)}{\omega_{n-1}}}, \qquad H = \{x \in \mathbb{R}^n : \langle b - a, x - a \rangle \le 0\},$$

with $a \in A$ and $b \in B$ such that |a - b| = h(A, B).

Inequality (2.4) is sharp, as one can easily check generalizing the examples given in Figures 1 and 2 to higher dimensions.

Problem 2.3 (Upper bounds). Prove that, if $A \subset B \subset \mathbb{R}^2$ are convex bodies, then $\delta(B,A) \leq 2\pi h(A,B)$. Does a similar upper bound hold for $n \geq 3$?

4 G. STEFANI

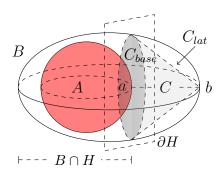


FIGURE 3. Setting of the proof of Theorem 2.2.

3. Proof of Theorem 2.2

Lemma 3.1 (Schwartz symmetrization). Let $n \geq 2$ and let $E \subset \mathbb{R}^n$ be convex body. Define

$$E^{Sch} := \left\{ x = (x', t) \in \mathbb{R}^n : |x'| \le \left(\frac{\mathcal{H}^{n-1}(E_t)}{\omega_{n-1}} \right)^{\frac{1}{n-1}} \right\}.$$

Then E^{Sch} is a convex body and $P(E^{\operatorname{Sch}}) \leq P(E)$.

Sketch of the proof of Theorem 2.2. Let $a \in A$ and $b \in B$ be such that h(A, B) = |a - b| as in (2.1). By definition of the half-space H in (2.5) and by minimality of the projection, the closed hyperplane

$$\partial H = \{ x \in \mathbb{R}^n : \langle b - a, x - a \rangle = 0 \}$$

is a supporting one for the convex set A in the point a. We let $C = \mathcal{C}(b, B \cap \partial H)$ be the cone with vertex b and base $C_{\text{base}} = B \cap \partial H$. Note that the lateral surface of C is given by $C_{\text{lat}} = \mathcal{C}(b, \partial B \cap \partial H)$.

Since $A \subset B \cap H$, $B \cap H \subset B$ and $C \subset B \cap \overline{H^c}$, by the monotonicity formula (1.1) we have

$$P(A) \le P(B \cap H) \le P(B)$$

and therefore

(3.1)
$$\delta(B, A) = \delta(B, B \cap H) + \delta(B \cap H, A)$$

$$\geq \delta(B, B \cap H) = P(B) - P(B \cap H)$$

$$= \mathcal{H}^{n-1}(\partial B \cap H^c) - \mathcal{H}^{n-1}(B \cap \partial H)$$

$$\geq \mathcal{H}^{n-1}(C_{\text{lat}}) - \mathcal{H}^{n-1}(C_{\text{base}}).$$

To conclude, we now just need to solve the minimization problem

(3.2) $\min \{ \mathcal{H}^{n-1}(C_{\text{lat}}) : C \text{ cone with given height } h \text{ and given base area } \mathcal{H}^{n-1}(C_{\text{base}}) \}.$

We apply Lemma 3.1 to the cone C (up to a rotation, since we need to slice perpendicularly to its height). Then we immediately get that

$$\mathcal{H}^{n-1}((C^{\operatorname{Sch}})_{\operatorname{base}}) = \mathcal{H}^{n-1}(C_{\operatorname{base}}), \qquad \mathcal{H}^{n-1}((C^{\operatorname{Sch}})_{\operatorname{lat}}) \leq \mathcal{H}^{n-1}(C_{\operatorname{lat}}).$$

In particular, C^{Sch} is a right circular cone with

$$\mathcal{H}^{n-1}((C^{\mathrm{Sch}})_{\mathrm{base}}) = \omega_{n-1}r^{n-1}, \qquad \mathcal{H}^{n-1}((C^{\mathrm{Sch}})_{\mathrm{lat}}) = \omega_{n-1}r^{n-2}\sqrt{h^2 + r^2},$$

where r is the radius defined in (2.5). This concludes the proof.

Problem 3.2 (Avoiding Lemma 3.1). Solve the minimization problem (3.2) for n = 2 without using Lemma 3.1. Can you solve it without using Lemma 3.1 also for $n \ge 3$?

4. Monotonicity of Wulff Perimeter

Inequality (1.1) naturally generalizes to the anisotropic (Wulff) perimeter. Precisely, given a positively 1-homogeneous convex function $\Phi \colon \mathbb{R}^n \to [0, \infty)$, if $A \subset B$ are two convex bodies in \mathbb{R}^n , then

$$(4.1) P_{\Phi}(A) \le P_{\Phi}(B).$$

Here $P_{\Phi}(E)$ denotes the anisotropic Φ -perimeter of a convex body $E \subset \mathbb{R}^n$ and is defined

$$P_{\Phi}(E) = \int_{\partial E} \Phi(\nu_E) \ d\mathcal{H}^{n-1},$$

where $\nu_E : \partial E \to \mathbb{R}^n$ is the inner unit normal of E (defined \mathcal{H}^{n-1} -a.e. on ∂E). Clearly, when $\Phi(x) = |x|$ for all $x \in \mathbb{R}^n$, $P_{\Phi}(E) = \mathcal{H}^{n-1}(\partial E)$, the Euclidean perimeter of E. The Φ -perimeter obeys the scaling law $P_{\Phi}(\lambda E) = \lambda^{n-1}P_{\Phi}(E)$, $\lambda > 0$, and it is invariant under translations. However, at variance with the Euclidean perimeter, P_{Φ} is not invariant by the action of O(n), or even of SO(n), and in fact it may even happen that $P_{\Phi}(E) \neq P_{\Phi}(\mathbb{R}^n \setminus E)$, provided that Φ is not symmetric with respect to the origin.

Similarly to inequality (1.1), inequality (4.1) is a consequence of the Cauchy formula for the anisotropic perimeter or of the monotonicity property of mixed volumes, [2, §7, §8], or of the fact that the anisotropic perimeter is decreased under intersection with half-spaces, [7, Remark 20.3].

We conclude this note stating a lower bound for the anisotropic deficit $\delta_{\Phi}(B, A) = P_{\Phi}(B) - P_{\Phi}(A)$ with respect to the Hausdorff distance h(A, B) of A and B. To do so, we need some preliminaries. Here and in the following, we let

$$\mathbb{S}^{n-1} = \{ x \in \mathbb{R}^n : |x| = 1 \}, \qquad \nu^{\perp} = \{ x \in \mathbb{R}^n : \langle x, \nu \rangle = 0 \} \quad \forall \nu \in \mathbb{S}^{n-1}.$$

If Φ is positively 1-homogeneous, convex and coercive on \mathbb{R}^n , i.e. $\Phi(x) > 0$ for all $x \in \mathbb{R}^n$, $x \neq 0$, then Φ is admissible, since the choice $\phi_{\nu}(z) = |z|, z \in \nu^{\perp}$, and $g_{\nu}(s,t) = c\sqrt{s^2 + t^2}$, $s,t \geq 0$, with $c = \min\{\Phi(x) : |x| = 1\}$, is possible for all $\nu \in \mathbb{S}^{n-1}$ (although not the best one for special directions in general).

Definition 4.1 (Admissible Φ). Let $n \geq 2$ and let $\Phi \colon \mathbb{R}^n \to [0, \infty)$ be a positively 1-homogeneous convex function. We say that Φ is *admissible* if, for each $\nu \in \mathbb{S}^{n-1}$, there exist two functions $g_{\nu} \colon [0, \infty)^2 \to [0, \infty)$ and $\phi_{\nu} \colon \nu^{\perp} \to [0, \infty)$ such that

- (i) g_{ν} is non-constantly zero, positively 1-homogeneous, convex and $s \mapsto g_{\nu}(s,t)$ is non-decreasing for each fixed $t \in [0,\infty)$;
- (ii) ϕ_{ν} is positively 1-homogeneous, convex and coercive on ν^{\perp} , i.e. $\phi_{\nu}(z) > 0$ for all $z \in \nu^{\perp}, z \neq 0$;
- (iii) for all $x \in \mathbb{R}^n$ with $\langle x, \nu \rangle \geq 0$, it holds

$$\Phi(x) \ge g_{\nu}(\phi_{\nu}(x - \langle x, \nu \rangle \nu), \langle x, \nu \rangle).$$

G. STEFANI

We can now state our result, which is contained in the following theorem. In the sequel, for each $\nu \in \mathbb{S}^{n-1}$, we let $W_{\nu} \subset \nu^{\perp}$ be the Wulff shape associated with ϕ_{ν} in ν^{\perp} , i.e.

$$(4.2) W_{\nu} = \left\{ z \in \nu^{\perp} : \phi_{\nu}^{*}(z) \leq 1 \right\},$$

where ϕ_{ν}^* : $\nu^{\perp} \to [0, \infty)$ is given by $\phi_{\nu}^*(z) = \sup\{\langle z, w \rangle : \phi_{\nu}(w) < 1\}$ for all $z \in \nu^{\perp}$. Moreover, for any $a \in \mathbb{R}$ we let $a^+ = \max\{a, 0\}$.

Theorem 4.2 ([9, Theorem 1.2]). Let $n \geq 2$ and let $\Phi \colon \mathbb{R}^n \to [0, \infty)$ be a positively 1-homogeneous convex function which is admissible in the sense of Definition 4.1. If $A \subset B$ are two convex bodies in \mathbb{R}^n , then

$$(4.3) P_{\Phi}(A) + \mathcal{H}^{n-1}(W_{\nu_H})r^{n-2} (g_{\nu_H}(h,r) - \Phi(\nu_H)r)^+ \le P_{\Phi}(B),$$

where h = h(A, B) is the Hausdorff distance of A and B and (4.4)

$$r = \sqrt[n-1]{\frac{\mathcal{H}^{n-1}(B \cap \partial H)}{\mathcal{H}^{n-1}(W_{\nu_H})}}, \qquad H = \{x \in \mathbb{R}^n : \langle b - a, x - a \rangle \le 0\}, \qquad \nu_H = \frac{a - b}{|a - b|},$$

with $a \in A$ and $b \in B$ such that |a - b| = h(A, B).

Open Problem 4.3 (Carnot groups). Let \mathbb{G} be a Carnot group on \mathbb{R}^n and let $P_{\mathbb{G}}$ be horizontal perimeter in \mathbb{G} . It is known that, if $A \subset B$ are \mathbb{G} -convex bodies in \mathbb{G} (see [8, Definition 3.15] for a definition), then $P_{\mathbb{G}}(A) \leq P_{\mathbb{G}}(B)$, see [8, Corollary 3.20]. Is it possible to prove an analogous version of Theorem 2.2 in this setting?

References

- [1] Archimedes, *The works of Archimedes. Vol. I*, Cambridge University Press, Cambridge, 2004. The two books on the sphere and the cylinder; Translated into English, together with Eutocius' commentaries, with commentary, and critical edition of the diagrams by Reviel Netz.
- [2] T. Bonnesen and W. Fenchel, *Theory of convex bodies*, BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith.
- [3] G. Buttazzo, V. Ferone, and B. Kawohl, *Minimum problems over sets of concave functions and related questions*, Math. Nachr. **173** (1995), 71–89.
- [4] M. Carozza, F. Giannetti, F. Leonetti, and A. Passarelli di Napoli, A sharp quantitative estimate for the perimeters of convex sets in the plane, J. Convex Anal. 22 (2015), no. 3, 853–858.
- [5] _____, A sharp quantitative estimate for the surface areas of convex sets in \mathbb{R}^3 , Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016), no. 3, 327–333.
- [6] M. La Civita and F. Leonetti, Convex components of a set and the measure of its boundary, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/09), 71–78.
- [7] F. Maggi, Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012. An introduction to geometric measure theory.
- [8] F. Montefalcone, Some relations among volume, intrinsic perimeter and one-dimensional restrictions of BV functions in Carnot groups, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 1, 79–128.
- [9] G. Stefani, On the monotonicity of perimeter of convex bodies, J. Convex Anal. **25** (2018), no. 1, 93–102.