ARCHIMEDES, A DINNER AND A THEOREM

A divertissement on the monotonicity of perimeter
GIORGIO STEFANI

ABSTRACT. If A, B C R" are two convex bodies and A C B, then the perimeter of A
does not exceed the perimeter of B. This monotonicity property of the perimeter dates
back to the ancient Greek and Archimedes himself took it as a postulate in his celebrated
work on the sphere and the cylinder. A few years ago, a couple of papers by M. Carozza,
F. Giannetti, F. Leonetti, and A. Passarelli di Napoli established lower bounds on the
difference of the perimeters of A and B in terms of their Hausdorff distance when n = 2
and n = 3. In this talk, after a brief introduction on the problem and the known results,
I will generalise these lower bounds to any dimension n > 4. Time permitting, I will
show how this approach can be extended to the case of anisotropic Wulff perimeters.

1. ARCHIMEDES AND THE MONOTONICITY OF PERIMETER

The ambient space is R™ with n > 2. For all s > 0 we let H® be the s-dimensional
Hausdorff measure (in particular, H is the counting measure).

Definition 1.1. A convez body E C R" is a compact convex set with non-empty interior.

If E C R" is a k-dimensional convex body, with 1 < k < n, we let JF be its boundary,
which is a set of Hausdorff dimension (k — 1).

Definition 1.2. If £ C R" is a convex body, then P(E) = H" (OF) denotes the
perimeter of E.

Proposition 1.3 (Monotonicity). If A C B C R" are convex bodies, then
(1.1) P(A) < P(B).

Inequality (IT) is weel-known and dates back to the ancient Greek. Archimedes (287
b.C. —212 b.C.) took it as a postulate in his work on the sphere and the cylinder, [, p. 36].
Various proofs of () are possible: via the Cauchy formula for the area surface of convex
bodies or by the monotonicity property of mixed volumes, [2, §7], by the Lipschitz property
of the projection on a convex closed set, [8, Lemma 2.4], or by the fact that the perimeter
is decreased under intersection with half-spaces, [0, Excercise 15.13].

Sketch of the proof of Proposition I-3. Assume A has polyhedral boundary, so that A =
", Hy,, where H; = {x € R": (x — p;, ;) > 0} is a closed half-space, with p;, v; € R",
|v;] = 1. Then it is enough to prove P(BN H) < P(B) for any H C R" closed half-space,
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since this easily implies
P(A)=P(BNA) =P <B NN Hm> < P(B).
i=1

Solet H={z € R": (x — p,v) > 0} for some p, v € R", with |v| = 1. Define the constant
vector field X = —r on R™. Then, by the divergence theorem, we have

0:/ d'Xd:/ Xt Vd
prme a(Bch)< VBQH> v

— X, d/}_[n—l X, est dHn_l.
(8H)QB)< V> * (8B)ﬁHC< Vs >

Thus H"1(OH N B) < H" 10BN H¢) and so
P(BNH)<H" Y 0BNH)+H""(0HNB)
<H" Y OBNH)+H"'(0BNH) = P(B).

If A is a convex body, then (by linear interpolation) we can find a sequence (Ag)ren of
convex body with polyhedral boundary such that Ay, C A and P(A) = limy_, 1 P(Ax).
Then P(Ay) < P(B) for all £k € N and the conclusion follows. O

Problem 1.4 (Converse). Under which assumptions on E C R™ the following implication
P(E) < P(C) VC C R" convex body, E C C = E convex body

1s true?

2. LOWER BOUNDS AND LEONETTI’S DINNER PROBLEM
Since A and B are compact sets and A C B, the Hausdorff distance of A and B is
(2.1) h(A, B) = max min |z — yl.

Let a € A and b € B be such that h(A, B) = |a — b|. It turns out that b € B\ A and a is
the orthogonal projection of b onto the closed convex set A.

Lower bounds for the deficit §(B, A) = P(B) — P(A) with respect to h(A, B) of A and
B have been recently established for n = 2,3 in [@-6].

The case n = 2 was treated for the first time in [6], and was subsequently improved
in [4] to the following inequality

2h(A, B)?
2
\/(Hl(gmL)> + h(A,B)Q + Hl(lzanL)

where L = {x € R? : (b — a,z — a) = 0}, see Figure [

The case n = 3 was studied in [5], where the authors proved the following inequality
2
wdh(A, B) < P(B),
>+ h(A,B)?2+d
where d = dist(a,0BNOH) and H = {x € R*: (b — a,z — a) < 0}, see Figure 2.

Inequalities (222) and (223) are sharp, in the sense that they are equalities at least in one
case, see [4,6]. Inequality (223), however, does not seem to be the correct generalization of

(2.2) P(A) + < P(B),

(2.3) P(A) +
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FIGURE 2. Inequality (233): setting (left) and optimal configuration (right).

inequality (222) to the case n = 3, because of the distance d = dist(a, 0B NOH) replacing
the bigger radius r = \/H2(B NoH)/m.

Problem 2.1 (F. Leonetti’s dinner problem, Levico Terme, January 2016). Is it possible
to prove similar inequalities for n > 47

Theorem 2.2 ([9, Corollary 1.3]). Let n > 2. If A C B are two convex bodies in R™,
then

n—212
Wn1T"""h

4+ —— < P(B),
VhZ+r24+r T (B)

where h = h(A, B) is the Hausdor(f distance of A and B and

(2.4) P(A)

(2.5)

n—1
T:n_ﬂ}l (Bﬁ(?H)) H={zeR":(b—a,z—a) <0},

Wn—1
with a € A and b € B such that |a — b| = h(A, B).

Inequality (P4) is sharp, as one can easily check generalizing the examples given in
Figures [ and 2 to higher dimensions.

Problem 2.3 (Upper bounds). Prove that, if A C B C R? are convex bodies, then
d(B,A) <21h(A, B). Does a similar upper bound hold for n > 32
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=== BN H ----1

FiGURE 3. Setting of the proof of Theorem 2.

3. PROOF OF THEOREM

Lemma 3.1 (Schwartz symmetrization). Let n > 2 and let E C R™ be convez body.

Define
n—1 ﬁ
B = {x = (2", t) e R" : 2| < <W> }

Wn—1
Then E5U is a conver body and P(ES") < P(E).

Sketch of the proof of Theorem 2. Let a € A and b € B be such that h(A, B) = |a — b|
as in (Z0). By definition of the half-space H in (228) and by minimality of the projection,
the closed hyperplane
OH={zeR":(b—a,z—a) =0}

is a supporting one for the convex set A in the point a. We let C' = C(b, BN JH) be the
cone with vertex b and base Cl,e = BN OJH. Note that the lateral surface of C' is given
by Clay = C(b,0B N OH).

Since AC BNH, BNH C Band C C BN H¢, by the monotonicity formula (I-T) we
have

P(A) < P(BN H) < P(B)
and therefore
0(B,A)=6(B,BNH)+d6(BNH,A)
>0(B,BNH)=P(B)—P(BNH)
=H" Y (OBN H®) —H"Y(BNOoH)
> H"H(Clar) — H" ™ (Chase)-

To conclude, we now just need to solve the minimization problem

(3.2) min{H”_l(Cﬁat) : C' cone with given height h and given base area 'H"_l(C'base)}.

(3.1)

We apply Lemma B to the cone C' (up to a rotation, since we need to slice perpendicularly
to its height). Then we immediately get that

Hn_l((CSCh)base) = Hn_l(cbase)a Hn_l((CSCh)lat) S Hn_l(clat)'
In particular, C5" is a right circular cone with

HH(C¥base) = wnar” ™, H T ((C¥M)iat) = woar" VR 412,
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where 7 is the radius defined in (233). This concludes the proof. U

Problem 3.2 (Avoiding Lemma B). Solve the minimization problem (B2) for n = 2
without using Lemma 3. Can you solve it without using Lemma B also for n > 37

4. MoONOTONICITY OF WULFF PERIMETER

Inequality (D) naturally generalizes to the anisotropic (Wulff) perimeter. Precisely,
given a positively 1-homogeneous convex function ®: R" — [0,00), if A C B are two
convex bodies in R", then

(4.1) Py(A) < Py(B).

Here Pg(FE) denotes the anisotropic ®-perimeter of a convex body F C R"™ and is defined
as

Po(E) = [ ®(vg) an ™,

where vp: OF — R™ is the inner unit normal of F (defined H" '-a.e. on OF). Clearly,
when ®(x) = |z| for all z € R", Py(E) = H" '(OF), the Euclidean perimeter of E. The
d-perimeter obeys the scaling law Pp(AE) = X" 'Py(E), A > 0, and it is invariant under
translations. However, at variance with the Euclidean perimeter, Pg is not invariant by the
action of O(n), or even of SO(n), and in fact it may even happen that Py (E) # Pp(R™\ E),
provided that ® is not symmetric with respect to the origin.

Similarly to inequality (1), inequality (21 is a consequence of the Cauchy formula for
the anisotropic perimeter or of the monotonicity property of mixed volumes, [2, §7, §8],
or of the fact that the anisotropic perimeter is decreased under intersection with half-
spaces, [, Remark 20.3].

We conclude this note stating a lower bound for the anisotropic deficit dg(B, A) =
Pg(B) — Py(A) with respect to the Hausdorff distance h(A, B) of A and B. To do so, we
need some preliminaries. Here and in the following, we let

S*'={zeR":|z|=1}, vi={zeR":(z,v)=0} VeSS .

If & is positively 1-homogeneous, convex and coercive on R", i.e. ®(x) > 0 for all x € R™,
x # 0, then @ is admissible, since the choice ¢, (z) = |2|, 2 € v+, and g,(s,t) = cv/s% + 2,
s,t >0, with ¢ = min{®(x) : |z| = 1}, is possible for all v € S*~! (although not the best
one for special directions in general).

Definition 4.1 (Admissible ®). Let n > 2 and let ®: R™ — [0,00) be a positively 1-
homogeneous convex function. We say that ® is admissible if, for each v € S"~!, there
exist two functions g, : [0,00)? — [0,00) and ¢, : v+ — [0, 00) such that

(i) g, is non-constantly zero, positively 1-homogeneous, convex and s + g, (s,t) is non-
decreasing for each fixed ¢ € [0, 00);
(ii) ¢, is positively 1-homogeneous, convex and coercive on v, i.e. ¢,(z) > 0 for all
2 Evt, 2 £0;
(iii) for all x € R™ with (x,v) >

0, it holds
(z) 2 gu(du(z — (z, 1)), (z,1)).
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We can now state our result, which is contained in the following theorem. In the sequel,
for each v € S*™ !, we let W, C v+ be the Wulff shape associated with ¢, in v+, i.e.
(4.2) W, ={zevt:gi(z) <1},
where ¢f: vt — [0,00) is given by ¢(2) = sup{(z,w) : ¢,(w) < 1} for all 2 € vt
Moreover, for any a € R we let a™ = max{a, 0}.

Theorem 4.2 ([9, Theorem 1.2]). Let n > 2 and let ®: R" — [0,00) be a positively 1-
homogeneous convex function which is admissible in the sense of Definition 1. If A C B
are two convex bodies in R™, then

(4.3) Po(A) + H " (W )1 (guyy (hyr) — (o)) < Pa(B),
where h = h(A, B) is the Hausdorff distance of A and B and
(4.4)
n—1 _
r:"’lH (BN OH) H={zeR":(b—a,z—a) <0}, vy a=b

H (W)
with a € A and b € B such that |a — b| = h(A, B).

T a—bf

Open Problem 4.3 (Carnot groups). Let G be a Carnot group on R"™ and let Pg be
horizontal perimeter in G. It is known that, if A C B are G-convex bodies in G (see [8,
Definition 3.15] for a definition), then Pg(A) < Pg(B), see [§, Corollary 3.20]. Is it
possible to prove an analogous version of Theorem 22 in this setting?
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